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STABILITY CHARACTERISTICS AND APPLICATION TECHNIQUES 
FOR PRECISION FREQUENCY SOURCES 

by 

Dr. L.S. Cutler 

Dr. Cutler is Director, Physical Research Laboratory, Hewlett-Packard Com
pany, Palo Alto, California. 

We would like to go back to some fundamentals and present some of the 

aspects of noise and fluctuation on signals which lead to the characteristics 

of various types of precision signal sources. 

First we will discuss representations of signals and go into some of 

the simple noise relationships. We will talk about how signals can become 

contaminated and then consider some of the various stability measures that 

have been proposed and are in present use and then talk about the effects of 

frequency multiplication on precision sources and means for achieving low 

noise frequency multiplication. In addition, we will consider some of the 

techniques for measuring stability and getting some of the numbers involved 

in stability measures. Last of all, I will present some of the characteristics 

of available sources -- by no means an exhaustive list, just a few. 

Figure·! is a representation of a pure signal. We have a signal which 

is a sinusoidal function of time and is depicted as a rotating vector. The 

real signal is the projection on the horizon-

tal axis of this vector as it rotates at the 

angular velocity of w
0

• Figure 1 is the 

vector as viewed in a coordinate system 

that rotates at the angular velocity. w
0

• In 

this coordinate system, the vector is fixed. 

This is the phaser representation. 
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If we change the length of the vector 

(Figure 2) but do not rotate it about its 

position, then we get a representation of 

amplitude modulation. Again, remember 

that this total vector is rotating at the rate 

of w
0

, but its length is changing in time. 

If we take the vector, keep its 

length constant and swing it back and 

forth so that it advances and retards as it 

--1 V(t lf--

Figure 2. PURE AMPLITUDE 
MODULATED SIGNAL 

rotates at w
0

, we have pure phase modulation. This is directly related to 

frequency modulation and is shown in Figure 3. In this case the phase angle, 

cp(t} is a function of time and it appears in the argument of the exponential. 

If we do both things simultaneously, we obtain simultaneous amplitude and 

phase modulation as shown in Figure 4. There are cases where the amplitude --

Figure 3. PURE PHASE MODULATED 
WAVE 

Figure 4. PHASE AND AMPLITUDE 
MODULATED SIGNAL 

represented by V(t} -- might be correlated with the phase angle cp (t}, so 

one would have a correlation between the amplitude and phase modulation 

that is present. In some cases this can be very important. 
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We consider amplitude modula

tion first. There is the carrier v
0 

and two 

sidebands (Figure 5) which rotate at rates 

v, 
2 

v, 
2 

Wml 

-wml 

wm with respect to this carrier 

vector, in opposite directions and 

are so phased that their maxima -

when they add up on the same direc

tion -- lies along v
0 

• This gives 

us a representation in phasor lan

guage of pure sinusoidal amplitude 

Figure 5. PURE SINUSOIDAL AMPLITUDE 
MODULATION-CARRIER PLUS 
TWO SIDEBANDS 

modulation -- carrier plus two sidebands. 

You can picture these two sidebands as being added to the end of the vector 

and rotating in opposite directions so that the net resultant is just to change 

the lengh of this amplitude vector and not to change its phase angle. 

If we go to a frequency domain representation (Figure 6) where we are 

talking about just the amplitudes of the carrier and sidebands, not the 

power, we represent the carrier at the center frequency w
0 

and the two side

bands equally spaced on either side of w
0 

by + wm where wm is the angular 

modulation frequency. The sidebands are shown as being in phase at the in

stant they lie along the carrier vector. 

Figure 6. FREQUENCY DOMAIN REPRESENTATION FOR 
PURE SINUSOIDAL AMPLITUDE MODULATION 
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Now let us consider the case where we have two sidebands again, 

but phased differently from the case we had for amplitude modulation. 

This is shown in Figure 7. Here again the two sideband vectors rotate in 

opposite directions, but now when they point in the same direction the re-

v, 
2 

Figure 7. SMALL INDEX SINUSOIDAL 
PHASE MODULATION CARRIER 
PLUS TWO SIDEBANDS 

sultant would be to cause some 

phase shift and this is a repre

sentation of small index sinusoidal 

phase modulation. One can also 

see that if he added these vec

tors, the length of the total result-

ant vector would change slightly, 

and consequently a single pair of 

sidebands does produce some ampli-

tude modulation in addition to phase 

modulation. Restraining the length 

of the vector to remain absolutely 

constant requires second-order and higher-order sidebands. One can go through 

and draw a diagram and see how all the Bessel function relations for the sideband 

amplitudes in phase modulation come about. 

Figure 8 is a frequency domain representation for pure sinusoidal 

phase modulation. This representation is to give the idea that the two side

bands are out of phase with respect to what they would be if it were amplitude 

modulation. Here again, if it were a 

power spectrum, one would have no in-

dication of phase, but we have tried to 

preserve some phase here by hav-

ing an amplitude spectrum rather than 

a power spectrum. 
Figure 8. FREQUENCY DOMAIN REPRE

SENTATION FOR PURE 
SINUSOIDAL PHASE 
MODULATION (Small Index) 
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In Figure 9 we consider a pure signal and one sideband. This has 

been broken down, as the second line in Figure 9 shows, into a phase and ampli

tude modulated wave and the phase and amplitude modulations are correlated, 

so a carrier plus a single sideband does give correlated phase and ampli-

tude modulation. The phase modulation is relatively pure if the sideband 

amplitude as compared to the carrier amplitude is fairly small. One can 

v, 

v, 
1f - >> l 

Vo 

Figure 9. AMPLITUDE AND SMALL INDEX PHASE MODULATION -
CARRIER PLUS ONE SIDEBAND 

picture this if he adds the sideband to the tip of the carrier vector and lets 

it rotate; it performs a circle out there, and the resultant vector then grows 

in length and shrinks in length at the same time it changes angle. It is 

apparent that the angle and length are correlated. This all leads to the point 

that any time there is an asymmetric power spectrum, there will be correla

tion between the amplitude and the phase modulation, even in the case of 

noise. 

So far we have considered mainly pure sinusoidal modulations. Now 

let us look at random processes, including noise. Here one has to invoke 

such things as autocorrelation functions, probability densities, power 

spectral densities, and phase and frequency power spectral densities. Let 

us investigate some of these things. 
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Figure 10 shows some very basic definitions. If one can assume 

some things about the signal, he may say that the autocorrelation function is 

the average value of the product of a time function with itself at a time -r later 

as shown in the first part of the equation in Figure 10. v(t) is a real function 

and the average brackets mean either time or statistical average in the case 

where these two are equivalent. The spectral density S(w) of this same 

function is the one-sided Fourier transform of the autocorrelation function R 

as shown in the second line. Conversely, there is the inverse Fourier trans-

Figure 10. 

Rv(T) = (v(t) \' (t + T)) 

(v real) 

Sv (w) = 4 J;v (T) coswT dT 
0 

1 1"" Rv (T) = 21T Sv (w) coswT dw 
0 

< > means time or statistical ave rage : 

RELATIONS BETWEEN· 
AUTOCORRELATION FUNC
TION, Rv(-r), AND SPEC
TRAL DENSITY, Sv(-r) 

form relation between R and S shown 

in the third line. These relations are 

very useful; they come up time and 

time again in this sort of work. A 

lot of what we are covering is treated 

in fair detail in the National Bureau 

of Standards' Technical Memo 394, 

which was also published in the IEEE 

Transactions on Instrumentation and 

Measurement entitled, "Characteriza

tion of Frequency Stability." 

Now we would like to define a couple of useful quantities related to 

phase and frequency as shown in Figure 11. It is useful to normalize both 

phase and frequency by dividing by the angular frequency of the oscillator 

itself. We define a variable x which is equal to the phase divided by w 
0 

and a variable y which is equal to the angular frequency (the time derivative 

of <I>) divided by w 
O 

so y is equal to ~ • 

X (t) = ~ 
We 

y (t) = .till_ = x (t) 
Wo 

Figure 11. DEFINITIONS OF x(t) AND y(t) 
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We have to work with spectral densities. Figure 12 shows some 

relationships between the spectral densities of x and y and <I> • Inasmuch 

as frequency is essentially the time derivative of phase, the spectral density 

of frequency will be w 
2 

times the spectral density of phase. S (w), for ex-
2 y 

ample, is equal to w S (w). That is a very useful relationship. 
X 

s (w) 
X ~ =~ 

S (w) 
y 

w 2 
0 

= S~ (w) = wa Sep (w) 

"-'o :a Woa 

2 
w 

w2 S (w) 
X 

Figure 12. RELATIONSHIPS BETWEEN S'f'(w), SIP (w), 
S (w), AND S (w) 

X y 

Let us talk now about contamination of signals. Signals can be con

taminated through noise by two processes: (1) multiplication or modulation, 

and (2) additive noise. By multiplication, we mean multiplication by some 

time function rather than frequency multiplication, although contamination does 

occur in that process. Additive noise is added to a pure signal and contaminates 

it when it is localized in frequency around the signal. This effectively adds 

sidebands to the signal and can be construed as a mixture of amplitude and 

and phase noise sidebands. 

We should look at various types of modulators. Figure 13 represents 

a simple amplitude modulator. The function A(t) is real, and consequently, 

one gets a signal which is not contaminated in phase. Its amplitude is now a 

function of time, therefore it is a pure amplitude modulator. 

Figure 13. AMPLITUDE MODULATOR 
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j w t 
Figure 14 shows a pure phase modulator. V0e 

O 
, a pure signal, is 

multiplied by a complex function with a constant magnitude, producing a sig

nal with a constant amplitude, V
O

, but a phase which is now a function of time. 

A(tl= 
etcp(t l 

Figure 14. PHASE MODULATOR 

Obviously, we can combine the two things and obtain simultaneous 

amplitude and phase modulation (Figure 15), and if one wants to make it 

correlated, he certainly can. 

Figure 15. AMPLITUDE AND PHASE MODULATOR 

Now let us look at additive noise -- the other contaminator of signals. 

Figure 16 is a representation of a narrow band random noise centered about the 

frequency w 
O 

• It has a randomly varying 

amplitude and a randomly varying phase. 

The vector rotates around in some 

random fashion and changes its length 

in a random fashion. If the noise were 

not centered at the frequency w
0

, one 

would find there would be some net 
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average rotation rates corresponding to the difference in frequency between 

the center of the spectrum and the frequency of reference, w
0

• 

We can resolve this narrow-band noise as shown in Figure 17 i.nto an 

in-phase part V (t) and a quadrature part V (t) both of which are random time 
C S 

functions. For most types of noise sources derived from a lot of statistically 

independent sources, one can prove that V (t) and V (t) will be gaussian 
C S 

random variables and will, in general, be independent processes provided 

we have chosen our center frequency properly. We can represent the in-

stantaneous voltage, shown on the bottom line of Figure 17, as an in-phase 

and a quadrature part times our pure sinusoidal signal that is rotating at the fre

quency of w
0

• Now, if we add a pure signal to this ,we get the pure signal modulated 

V (t) = V (t) cos ¢ (t) 
c n n 

Ve (t l 
. ' t 

= [V (t) +jV (t) J eJ""o 
C S 

Figure 17. RESOLUTION OF NARROW-BAND RANDOM NOISE 
INTO AMPLITUDE (IN-PHASE) AND PHASE (OUAD
RATURE) COMPONENTS 

as shown in Figure 18. The resultant signal can be resolved into an equiva

lent phase modulation and equivalent amplitude modulation. 

Figure 19 represents the signal plus random additive noise in terms of 

V (t) and V (t). The relationships given hold true if the noise voltages are 
C S 

small compared with the signal voltage. 
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Figure 18. 

v-(t l = (vo+Vn (t)e .iq>n(tl)e jwot 

i[ Wot+ Vnll) sin¢,. (I>] 
"'[vo+Vn(t)cos,tw]e Vo 

if VnOl « I 
Vo 

PURE SIGNAL AT ~_o_ PLUS 
NARROW-BAND RANDOM 
NOISE 

\ ( l) 

if 

[
V + \" (t) + j\ (t)] l' .I W:, 1 

0 C ll 

V (t) 
s •·,: l and -\,-.- r,· I 

0 

Figure 19. SIGNAL PLUS RANDOM 
ADDITIVE NOISE 

Figure 20 is a representation of the RF power spectral density of a pure 

signal with added noise. The pure signal is an infinitely thin spectral line that 

is infinitely tall. Presumably, it has area P
0 

under it and the additive noise 

has area P which is equal to the integral of the spectral density of the noise n 
power over all frequencies. Here· we are using one-sided spectral densities in 

terms of w: (rather than frequency f or ,, ) • 

SRF (wl=Pa8(w- wol +Svn(w) 

SRF'(w) ro 

2 

P. = '{Q 
o 2 

, 1(1) Pn = 
2

,r S110 (w) dw 
0 

Wo W 

Figure 20. RF POWER SPECTRAL DENSI1Y OF PURE SIGNAL PLUS 
ADDED NARROW-BAND NOISE 

If one has additive noise, how does he relate the effective phase 

modulation or the effective amplitude modulation of that noise back to things 
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one can measure, such as spectral density of a noise itself, the signal 

power, etc. ? Figure 21 shows some of the mathematics of how this is done. 

The spectral density, S 'P ( w), is given by the spectral density of the sine or 

quadrature part of the noise voltage divided by V~ and that can be given in 

terms of the spectral density of the noise itself, as shown in the second line. 

We can say that the spectral density of phase is given by the bottom line, 

the spectral density of the noise voltage divided by the power in the signal" 

This is a very useful and important relation. 

\ (u.:) 1' 
s ~-- for 

1
,'

1 << I 
0 

s,. (u.:,o + u.:) + s,. (w0 - w) 
11 11 

is symmetric about w0 

s (u.: + u.:) 
\' 0 

Then S (u.:) "=' 11 

p 
0 f 

Figure 21 

if S (wl ,. 
11 

Figure 22 shows the effect of a spectrum of added noise that has even 

symmetry about "'o. Suppose we have a rectangular band of added noise that 

is 2 1r B wide and S
O 

tall. Therefore, the total noise power is S
O

B • This 

transforms to the effective modulation spectral density, either phase, Sv {w), 
s 

or amplitude, Sv (w), as shown in the right half of Figure 22. 
C 
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S"s(w) 

or Svc(w) 

r21r s--j cc;> l 
So T□ 

. -I' ! ---+---+----
0 ~ w O ~B 

0. • 
V 

a ~ • a :a 
V V 

8 C 

-2-

2So 

Spt'l'trum symmetric '¾bout w0 :::::> V
5 

& Ve uncorrcl;iterl 

Figure 22 

w 

There one sees the spectral density is twice as high and it extends out to half 

the bandwidth, but the total area under it is the same, so that the total area 

under either the sine part or the cosine part is equal to the total area under 

the additive noise. This is a very important relationship. This is a 

case where we have a symmetric spectrum, and that implies immediately that 

the sine part and cosine part, or, equivalently, the phase and amplitude 

modulations produced by this additive noise, are uncorrelated. 

Figure 23 is an example of an asymmetric power spectrum of the addi

tive noise. This leads to the power spectral density for the sine or cosine 

part corresponding to the phase or amplitude modulation parts as shown on 

the right half of the figure. The spectral density is obtained essentially by 

taking the even part of the RF power spectral density of the added noise and 

translating it down to zero frequency. For the case of asymmetric spectral 

densities, one can show that the effective amplitude and phase modulations 

are correlated. 

0 w 

Figure 23. ADDITIVE RANDOM NOISE; SPECTRUM ASYMMETRIC ABOUT 
w 

0
¢ Vs AND V c CORRELATED 
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If one has any kind of a signal with a zero mean, as in Figure 2 4, the 

variance of that signal is equal to the auto-correlation function at zero lag 

which is equal to the integral over the power spectral density. In other words, 

it is the total power in the signal. We are interested in the mean square value 

of the phase as given by the bottom line in Figure 24. If one has a signal that 

is quite pure but is contaminated with additive noise, then the total variance 

in phase produced by that additive noise is just equal to the noise-to-signal power 

ratio as shown in the bottom line. 

For v with O mean, 

1 rcr• 

0'2 = R (0) = J Sv(w)dvJ 
V V 2 7T 

G 

0'2 p V 

so that 0'2 n n 
= p = 

cp p 
0 0 

Figure 24 

Obviously, one way to get a better signal or equivalently a 

smaller variance in phase, is to shrink the power spectrum of the additive 

noise by narrow-band filtering and, therefore, reduce the total noise power. 

This, of course, will reduce the total phase angle that the signal is swinging. 

Let us look at Figure 25 which shows the spectral density of x for 

a typical signal that might be derived from a precision oscillator or a cesium 

standard, hydrogen maser, or something else. It has proven to be useful and 

accurate to represent this as a series in inverse powers of w, and generally 

most sources will exhibit a number of these components. Remember S (w) 
X 

is essentially a measure of the spectral density phase -- not frequency. 
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Typical sources will have phase spectral densities that can be represented "s 

Sx lw) • h-• w-• + h_ 3 w- 3 +h_ 0 1,r• + h-
1 

w-' + h0 

L L L L__ white phase 

flicker phase 

random walk phase 

flicker frequency 

random walk frequency 

Figure 25 

Most signals can be broken down as shown in Figure 25, and one can assign 

values to the coefficients by making measurements. In the process of 

designing equipments, one can get some idea as to how to reduce some co

efficients, perhaps at the expense of others. 

In addition to spectral densities, there is another very useful measure, 

the Allan Variance shown mathematically in Figure 2 6. It is a measure of 

of frequency fluctuations for some averaging time T. Figure 26 

shows a special case of the more general Allan Variance which involves N 

samples with the time between samples of T and averaging time r. There 

are also some cases involving high frequency divergences, so sometimes 

one must consider the high frequency cutoff either in the apparatus he 

is measuring or the apparatus with which he is making the measurement. 

Another useful measllre is the Allan Variance. cr/(r) = (o/(2, T, r)) which is therms 

fractional frequency fluctuation averaged over time T for pairs of adjacent samples, 

sin
4 (f) 

1 J"' a 2
(T) = - dw s (w) 

y ff O y 

This is a special case of ( a y" (N, T, T)) 

Figure 26 
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Figure 27 shows some very simple relationships which have been 

derived for the power law spectra. These relationships are mentioned 

in detail in Technical Note 394 of the National Bureau of Standards. For 

a phase spectral density proportional to w(o: - 2), the Allan Variance is 

proportional to ,,.. where Tis the averaging time and the graph on the right 

of Figure 27 gives a relationship between p. and a. For example, for 

flicker-frequency noise, a would be -1 in which case µ is O. That is, 

the Allan Variance is then proportional to -r0; and so is a constant. There

fore, if one takes Allan Variances as a function of averaging time, and 

finds that they do not change, he knows that he is looking at a flicker 

frequency noise spectrum. 

For S (w) = h w (OI - 2 ) 
X (Ol-2) 

cr 2 (T) C Tl-I 
y OI 

o( 

.3 

3 
µ 

Figure 2 7. RELATIONSHIPS FOR POWER LAW SPECTRA 

Another case that commonly occurs is white frequency noise. This 

is a commonly observed type of frequency fluctuation for moderate averaging 

time in cesium beam standards or rubidium standards. For this case, 

a = 0 and f'- = -1 • 

Now let us talk about frequency multiplication. If a frequency 

multiplier multiplies by a number N, N does not necessarily have to be 

an integer. For example, in a well-designed frequency synthesizer, N 

can be some rational fraction. In any case, upon frequency multiplication 

by the factor N, the instantaneous phase angle is multiplied by N. Usually 
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amplitude limiting occurs so that mose of the noise on the output is phase 

noise. 

Let us now consider some of the techniques for frequency multiplica

tion. Figure 28 shows one scheme for achieving a spectrally-pure signal 

after frequency multiplication. Of course, if one had a pure source and it 

was contaminated with some noise so that it represented a real physical 

source -- namely our precision frequency source -- then we would like to re

move as much of the noise modulation as possible by using a narrow-band 

filter, which could be either a passive filter or active filter such as a high

level phase-locked oscillator. This filters the signal and improves the sig

nal to phase noise ratio. The filtered signal can then be fed into a low-noise 

frequency multiplier. In order to have a decent RF power spectrum, the 

Precision 
Source 

Narrow 
Band 
Filter 

Passive filter or active filter 

such as a high level phase

locked oscillator 

Low Noise 
Frequency 
Multiplier 

Figure 28. TECHNIQUE FOR ACHIEVING SPECTRALLY PURE SIGNALS 

signal-to-noise power ratio after multiplication must be much greater than 1, 

so one must start out with a signal-to-noise ratio before multiplication which 

will satisfy this. For example, assume a 60-db signal-to-noise ratio prior 

to multiplication. Multiplying the frequency by 1,000 times. corresponds to 

increasing the phase modulation by 60 db. The result would be a signal-to

noise ratio of O db after multiplication, and there would, consequently, be 

great spreading out of the noise, higher-order mixing products, etc. In addi

tion, the power in the signal which we would have liked to preserve would have 
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gone down and been smeared out into the sidebands. It is always neces

sary to look at what you wish to achieve; what frequency multiplication you 

want to do; and then satisfy the criterion that the signal-to-noise power 

ratio, after multiplication, be much less than 1. This places very stringent 

requirements on the signal-to-noise ratio prior to multiplication. 

Figure 29 demonstrates one technique for achieving low noise frequency 

multiplication. An input signal is fed to a filter or a phase-locked oscillator 

to clean up the signal as much as possible before it goes into the first fre

quency multiplier. Somewhere along the chain is another phase-locked os

cillator, which acts as an active filter, again cleans the noise off the sides 

of the signal with an optimum bandwidth such that the total spectral density of 

noise is minimized. This is again followed by frequency multiplication and 

filtering. The whole process is continued until the desired output frequency 

is achieved. This is probably one of the best techniques for achieving low 

noise frequency multiplication. 

:r1 1,u• 1·,11,..r,,r 
Phase luck1._•d 
Oscillator 

Frequency 
l\lultiplier 

Phase locked 
Oscillator 

Frequency Output 
Multiplier .. , , •. ~ 

Figure 29. TECHNIQUE FOR LOW NOISE FREQUENCY MULTIPLICATION 

A technique for achieving relatively low noise frequency multiplica

tion if a fairly noise free signal is available is shown in Figure 30. It is 

essentially a phase-locked oscillator in which the phase comparison is done 

by sampling the output oscillator, the VCO, with a sampler run from the input 

signal. Loop bandwidth is determined by the sampling rate and the type qf 

filter used. The loop bandwidth cannot be higher than one-half of the 
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Input U--------f Sampler t-------t Sampler t---------f vco Output 

Error 
Sienal 

Frequency 
Control Signal 

Filter 

Figure 30. SAMPLED SIGNAL PHASE LOCK LOOP FOR 
FREQUENCY MULTIPLICATION 

sampling rate. There are many samplers available now which will operate up 

into X-band regions and higher. This technique is useful for phase locking 

some of the very high frequency oscillators. 

Now let us consider some methods of measuring the noise. Figure 31 

shows a phase detector technique which is useful for measuring higher fre

quency noise. Two sources, presumed to be identical, and multiplied in 

frequency by optional frequency multipliers are fed into a phase detector. 

The output of the phase detector then can be fed back through a low-pass 

filter and thus make a very loose, narrow band phase-lock loop to keep the 

signals essentially in average phase quadrature for long periods of time. 

Figure 31. 

Si,nal Source 
II 

S4(nal Source .. 

Optional 
Frequency 
M.ultlplier 

Optional 
Frequency 
M.ulttpller 

Pbue 
Detector I 

I 
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Operation is then on the linear slope portion of the phase detector. Its out

put can be spectrally analyzed by a narrow-band wave analyzer, and the out

put can be related back to S<P(w) or Sx{w). This technique is well docu

mented in the literature and very often used. 

In Figure 32 is shown a technique for measuring S~(w) or SY {w}. The 

signal source under test is passed through an optional frequency multiplier, 

then into a frequency discriminator. Pne may use a cavity type discriminator 

or something similar.) The output will be a voltage that is proportional to the 

frequency swings on an instantaneous basis and may be analyzed with a 

narrow-band wave analyzer. It gives spectral information for the frequency 

components above about 1 hertz. 

:i1gnal Source 
l nder Test 

Optional 
Frequency 
Multiplier 

Frequency 
Discriminator 

Technique for measuring S¢ (u.:) or 5y (w) 

Useful for fi ~ 1 Hz 

:,,;arrow 
Band \\a1" 
Analyz.:r 

Figure 32. TECHNIQUE FOR MEASURING S r,c{w) or Sy (w) 

In the case of very low frequency noises where direct spectral analysis 

techniques cannot be used, one must actually record the phase (Figure 33). 

A plot should be made of the phase versus time. The autocorrelation function 

of the phase may then be obtained. o-
2

(,.) can be obtained from the phase 
y 

data by taking successive phase differences. Here again, we have two sig-

nal sources with optional frequency multipliers and linear phase detector. 

In this case it is desirable to have a linear phase detector because the phase 

will make very large excursions. 
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Figure 33. DIRECT PHASE RECORDING 

Another technique using two sources assumed to be identical is shown 

in Figure 34. The two sources are slightly offset in frequency to get a beat 

note for the counter measurement. This is called the "Beat Period Technique." 

The signals should be fed from the signal sources through the optional fre

quency multipliers into a mixer or phase detector followed by a counter. The 

period of beat note or its frequency is measured with an averaging time de

termined by the time interval counter. Applying the appropriate statistics to 

a number of such measurements gives c/ (-r) directly. 
y 
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•I 
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Option■l 
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Multiplier 
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Frequency 
Multiplier 
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Figure 34. TECHNIQUE FOR MEASURING u (.,.) 
y 
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Let us now look at a few of the actual characteristics of some of the 

sources. As mentioned previously, this is by no means an exhaustive list 

and there are probably great errors of omission. 

Figure 35 shows " versus 'T' for a number of sources. The 100-

megahertz crystal oscillators have fairly low phase modulation in the high 

frequency range. Their " is flat versus time for times much longer than 

about 10 milliseconds. This indicates that they suffer from flicker frequency 

noise. The higher the fundamental oscillation frequency, the worse the low 

frequency noise characteristic (or long-time performance) of an oscillator will 

be. Conversely, the higher the frequency of the oscillator, the better its 

a ver.sus T for several precision sources 

er 2 • er y2 
(2, T, T ), the.Allan variance 

.001 .01 .I T, SECONDS 

Figure 35. " VERSUS 1' FOR SEVERAL PRECISION SOURCES 

high frequency noise characteristics (or its short-time performance) will be. 

Note the curves for cesium and rubidium. These are typical of the Hewlett

Packard rubidium and cesium standards. The short-time performance is dom

inated by the 5-megahertz crystal oscillator that is locked to the atomic 

resonance. The behavior for long times and intermediate times is determined 

by the atomic resonator. We have two time constants noted -- !-second and 
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60- second time constants. One can get some control of the behavior by 

changing the loop time constant with which the oscillator is locked to the 

atomic resonator. We have shown rubidium flattening out into a flicker noise 

· region, something below a part in 1 O 
12 

The cesium curves on the right side of Figure 35 indicate the shot 

noise region. That is essentially the noise determined by the number of 

cesium atoms per unit time that one detects. Cesium performance has been 

greatly improved with the development of a new 16" tube that is about ten 

times better than that of the present 16" tube. The hydrogen maser is shown 

locked to a low-power, 100-megahertz oscillator. One can see where the 

loop crossover takes place. 

The spectral density plots in Figure 36 are for some low-frequency 

oscillators. The solid curves are from the data sheet on the Hewlett-Packard 

105 oscillator. The performance characteristics in the frequency range we 

measured were equivalent or better than our guarantee. The broken line repre

sents the performance of a new low noise Ebauches oscillator which was re

cently reported by Brandenburger and Kartaschoff. The circled points are an 

experimental 1 a-megahertz Hewlett-Packard oscillator. The scale on the 

left is Sx(w) in db and if one adds 216 db to the scale, it gives the performance 

Figure 36. 
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at X-band. Adding 206 db gives the performance at the S-banda Evidently 

one can scale the chart for any frequency that is of interest by adding the 

appropriate number of db to the ordinate. 

Figure 37 gives spectral plots for other types of oscillators, includ

ing some microwave oscillators. The right-hand side of the figure represents 

high frequency behavior. Note that the two-cavity klystron, the UHF-cavity 

oscillator and X-band Gunn oscillator, and the UHF voltage controlled oscil

lator have very good performance for these short times o That bears out the 

earlier statement that if one wants very high spectral purity at high frequency 

for very short times, a high frequency oscillator should be used. Notice also 

s,(wl 
db 

] -220 

-240 

-2 

-280 

-32 

-340 

Spectral densities Sx Cc..,,) !or 

various sources 

1()"3 J6" IO-I l lO U U if' ti:f 106 r:} 108 W RADIANS/SEC 

Figure 37. SPECTRAL DENSITIES FOR VARIOUS SOURCES 

that these sources have spectral densities that go up quite steeply in the 

flicker noise region and the performance for low modulation frequencies with 

corresponding long averaging times is pooro We have plotted, for comparison, 

a 5-megahertz crystal which has rather intermediate performance high fre

quency wise, and considerably better performance low frequency wise. We 

have also plotted a hydrogen maser -- the purest oscillator a It has the best 
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low frequency performance, but rather poor high frequency performance. 

This is because its power level is so low. 

Figure 3 8 represents S ( w) for several precision sources. These 
X 

sources are generally composite sources, such as two oscillators locked to-

gether to achieve the best results of both, a rubidium standard, a cesium 

standard, or a hydrogen maser with a phase lock. Again, if the output oscil

lator is a high frequency oscillator like the 100-megahertz oscillator, it has 

better high frequency performance than something that has a 5-megahertz os

cillator tied to it. Over on the low frequency end, we see that hydrogen has 

the best performance. 

-1 

S,(W), 
db· 

-240 

-260 

-280 

-=t -!20 

1()-3 1()-2 I()_, 

~pectral dem11tles Sx (u;) for· »i·v,·1·;,! 

precu11on soun:l.'!> 

,d 104 105 W 
RADIANS/SEC 

Figure 3 8. SPECTRAL DENSITIES FOR SEVERAL 
PRECISION SOURCES 

Figure 39 shows spectral densities for two high-performance frequency 

synthesizers. One can see, here again, if we were to multiply these up to 

X-band, the 300 db point at the modulation frequency of 10
3 

radians/second 

would be degraded to 84 db. 

One word of caution on looking at frequency synthesizers: since they 

usually cover a very wide frequency range and the output frequency is very 

often achieved by mixing two high frequency signals, the spectral density 
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does not improve as the frequency goes down. Therefore, S ( w) would get 
X 

much, much worse at lower frequencies. The curves in Figure 39 are plotted 

for frequencies close to the top of the frequency range of each synthesizer, 

so they must be used with caution. 

-200! 
·-220 

-240 

s,(wl-2so 
db 
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-360 
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frequency S.intl1l•,;1;,1·r,-, 

10 102 103 104 105 106 107 W 

RADIANS/SEC 

Figure 39. SPECTRAL DENSITIES FOR TWO 
FREQUENCY SYNTHESIZERS 

We have tried to lead you very quickly through some of the basics 

that determine the characteristics of signal sources. We have also discussed 

some of the measuring techniques and some characteristics of various avail

able precision sources. 
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DISCUSSION 

DR. VESSOT: I think we can give you some fairly firm data on hydrogen 
masers beyond 100 seconds. The people at Jet Propulsion Labs have seen 
7 parts in 1015 onward to 106 seconds; and recently -- which is extraordi
nary since it shows flicker behavior that is flat over about four decades 
starting at 100 seconds going to 1,000,000 seconds -- we have seen 3 to 5 
parts in 1015 at 1,000 seconds, in recent measurements with small masers 
and slightly different cavities o 

DR. CUTLER: That is a very respectable performanceo 
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