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ABSTRACT

A prototype of a semireal-time system for synchronizing the DSN station clocks by radio
interferometry was successfully demonstrated on August 30, 1972, The system utilized an
approximate maximum likelihood estimation procedure for processing the data, thereby
achieving essentially optimum time synchronization estimates for a given amount of data,

or equivalently, minimizing the amount of data required for reliable estimation. Synchroni-
zation accuracies as good as 100 nsec rms were achieved between DSS 11 and DSS 12, both
at Goldstone, California. The accuracy can be improved by increasing the system bandwidth
until the fundamental limitations due to position uncertainties of baseline and source and
atmospheric effects are reached. These limitations are under ten nsec for transcontinental
baselines.

I. INTRODUCTION

It is well known that the clocks at widely separated antenna ground stations can be syn- .
chronized by the techniques of very long baseline interferometry (VLBI). The objectives

of this work are to optimize the signal processing of VLBI data and, utilizing the processing

techniques developed, to demonstrate an operationally feasible time-synchronization sys-

tem for the Deep Space Net (DSN). Although the results are discussed with application

to the 26-m and 64-m antennas of the Deep Space Station (DSS) of the DSN, the analysis

and techniques are applicable to any similar networks.

There are two reasons that an operational VLBI time-synchronization system may be
desirable for the DSN. First, accuracies an order of magnitude better than currently at-
tained by the moon-bounce system may be attainable with little initial investment and with
operational costs which should be no higher than for the existing system. Second, VLBI
may be the only operationally feasible method for achieving the 10- to 20-nanosecond (ns)
accuracies required for two-station tracking of deep space probes. ! 2

The time-synchronization accuracy attainable by interferometry over very long baselines
is fundamentally limited by the uncertainties in the differential time delay from the radio
source to the antennas. These uncertainties, which increase with baseline length, are
caused by errors in the estimates of the source positions and antenna location and by the
variable propagation delays in the atmosphere. It is anticipated that the antenna locations
will soon be known to within about one meter, and source position errors can be reduced
to this same level by interferometry. The atmospheric effects depend on frequency in a
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known manner, and can be cahbrated by receiving on two frequencies, say S- and X-band.
The fundamental limitation of accuracy can probably thus be reduced to ten ns or less for
intercontinental baselincs.

Until the fundamental limit is approached, the synchronization accuracy depends pri-
marily on the utilized bandwidth, provided that the signal-to-noise ratio is high enough for
reliable detection. The experiment reported on here confirms the two most important
analytical results: Iiirst, that reliable estimates can be achieved with a small enough amount
of data, about | million bits, so that semireal-time processing is feasible; and second, that
with this amount of data, the rms errors are less than 0.1 times the inverse system band-
width, so that rms errors of less than ten ns can be achieved with system bandwidths of
only about ten MHz.

1. DESCRIPTION OF EXPERIMENT

As a first step in demonstrating the feasibility of an operational system for DSN clock
synchronization by VLBI, an experiment was conducted on August 30, 1972, between the
26-m antennas at DSS 11 and 12, both at Goldstone. The experiment was implemented
using a minimum of special interfacing hardware in addition to standard DSN station
equipment. The data werc acquired and processed following the approximate maximurmn-
likelihood method described in the Appendix and in Reference 3.

A simplified block diagram of the experiment is shown in Figure 1. At each station, the
received signals were demodulated in two-phase quadrature channels, filtered, quantized
to one bit, and buffered into an XDS 920 TCP computer. Besides the receivers, the TCP
computers are the major portion of the system. The special equipment for the experiment
consisted of the two-channel demodulators, the filters, limiters, and samplers; and the
butfers from the sampler to the TCP computers. This was all contained in one small
chassis for each station, plus cables to interface to the computers.

The experiment procedure was to initiate sampling at the same time at each receiver ac-
cording to the station master clocks, and to fill the TCP computer memories with data at
the highest possible sampling rate. The computer specds limited the data rate to 500 kbps,
or 250 kbps per channel, so that the system bandwidth was limited to 250 kHz. Further-
more, the maximum number of samples which could be taken at this rate was limited by
the memory sizes to approximately 320,000 bits. In an operational system, the data could
be transmitted directly from the computers to JPL over the high speed data lines and
processed within a few minutes in the Network Control System (NCS) or other computers.
In the experiment, however, real-time opcration was not required, but instead it was de-
sired to make a number of independent e¢stimates of time synchronization using each of
several radjo sources. Therefore, the data were written onto magnetic tape and processed
later on a Sigma-5 computer at JPL, Five different radio sources were observed, with a
total of 504 batches of data taken at ten-sccond intervals.
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Figure 1. VLBI time-synchronization experiment block diagram.

i1l. PRINCIPAL RESULTS AND SYSTEM IMPLICATIONS

The desirability of an interferometry time synchronization system for the DSN depends on
the ability to achieve reliable results with a reasonable amount of data. This, in turn, de-
pends on the availability of radio sources with enough correlated flux, that is, with enough
electro-magnetic flux which appears to be from an ideal point-source when viewed by the
long baseline interferometer. In this section, we set a standard for the required source
intensity for various system configurations based on experimental and analytical results,
and show that adequate sources arc available to result in an operationally feasible system.

The experimental results were limited by the system parameters of two 26-m antennas

with temperatures of 16.3K and 37K, 250-kHz bandwidth, and 3.2 X 10° bit

buffer size. The theoretical and experimental results are compared in Figure 2. Also shown
are the theoretical results for a 2.5-MHz bandwidth, which could be realized by removing
the sampling rate restriction from the current (Block 111 receiver) system, and for a 25-MHz
bandwidth, which can be realized with the future DSN Block TV receivers. For the three
strongest radio sources, rms processing errors of 96, 228, and 403 ns were achieved, in

close agreement with theory. The results for the weakest of these sources, with an esti-
mated correlated flux of 4.6 fu, are most significant for two reasons: First, the estimates
were reliable even though the signal-to-noisc ratjio was somewhat lower than the desirable
minimum, and second, the results were in close agreement with theory, indicating that the
theory does not brecak down until the signal-to-noise ratio is reduced below this level.

Based on both the theoretical and experimental results, we conclude that a source intensity
of 5.5 fu would have been adequate to reliably achieve an rms error of less than 0.4 usec,

or less than one-tenth of the inverse of the system bandwidth. Whenever possible, higher
accuracies should be achieved by increasing the system bandwidth and not the amount of
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. data or the signal-to-noisc ratio, both because few sources have more than two to three fu of
correlated flux over long basclines, and because increasing the amount of data is expensive
m terms of butter storage, computer time, and ground communications lacility (GCF)
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Figure 2. Theoretical and experimental time-synchronization crror versus signal-to-noise ratio and bandwidth.

Table 1 presents the source intensitics required to achieve the reliable performance Jevel of
one-tenth of the inverse system bandwidth for various antenna sizes and receiver noise
temperatures in the DSN. Two bulfer sizcs are considered, the 0.32 megabit usable in

the TCP computers, and 1.0 megabit, which is a practical size to consider if special-purpose
memories are used for wider bandwidths. In utilizing Table 1, one should keep in mind
that the system temperatures increase at low clevation angles, so that the required {luxes

might increase by a factor of about 1.3,
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Table | .

Source Intensity Required for Various System Parameters,

Amount of Data | Sourer Inteadiiv
Antenna Didincters Systein Temperatures or Bufler Size {fur of

(m) (k) {105 bits) Correlated Flax)
20 26 17 37 .37 5.30
26 26 17 37 1.0 348K
26 26 17 17 .32 A0
26 26 17 17 1.0 2.34
64 26 17 37 0.32 224
64 26 17 37 1.0 1.26
64 20 17 17 0.32 1.51
64 26 17 17 ' i.0 0.86
64 64 17 17 0.32 0.61
04 64 17 17 1.0 0.35

The availability of known radio sources was surveved using Reference 4 and a computer
program for mutual visibulity devised by J.G. Williams of the JPL Tracking and Orbit
Determination Section. Considering sources to be jointly visible only when the elevaiion .
from both stations is 10 degrees ot greater, there is always at lcast one source of 1.3 fu

or stronger visible by the station pairs at Goldstone and Spain, Goldstone and Australia,
and Spain and South Africa. Sources of 2.0 fu are available for most of the day, and
sources of 3 to 6 fu are normally visible for at least a few hours each day. The source
3C-454.3, which is sometimes as strong as 6.38 fu,* is visible to each of the above pairs

for at least three hours a day, but unfortunately it has at other times been observed to be
considerably weaker, and similar variations occur with some of the other strong sources. It
is theretfore not desirable to base a system on the strongest few sources.

Considering both the source infensitics required and their availability, it is safe to say that
station pairs with at least onc 64-m antenna can be synchronized at will to within one-tenth
of the inverse system bandwidth with 1.0 megabit of data. That is, there would be little if
any operational restriction as to time of day due to lack of mutual visibility of adequate
sources. Synchronization of two 26-m antennas could be accomplished with some restric-
tions on time of day, or by using more data. [t is important to note that the amount of
data used is not restricted by the high-speed buffer size, but convenience is sacrificed if it
becomes necessary to fill the buffer several times, store the data on magnetic tape between
fills, and then transmit a larger amount ot data to the central computer for processing.

We conclude that a system with 1.0-megatit buffers would be operationally feasible. [t
would be Jess restricted than the X-bard moon-bounce system, for which moon visibility
restricts the time of day, and even the time of year for two northern hemisphere stations.
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1V, ESTIMATION PROCEDURE

Phe estimates of time-synchronization crror were made using the approximate maximum-
fikehhood method derived in the Appendix und in Reference 30 This merhod is distin-
cuished from normal cross-correlation methods in that the cross-products are multiplicd by
appropriate weighting lunctions beloee being summed or envelope detected, This weighting
accounts for changes in clock offset during the measurement tinme, and provides an optinun
method for resofving the time estimates to greater accuracy than the time between samples,
Approxtmate maximum-likelihood estimates of fringe frequency., phase, and signal-to-noise

ratio also result

The demodulation, Nltering, and sumpling nrocedures are shown in Figure 3, and are de-
scribed in detuil in Section Voand io the Appendix. The ith samples in the phase-quadrature
channels atter demodulation. filtering, and limiting are denoted by X, and Y.‘ for DSS 11
and by 7. and W, for DSS 1.2, "These signals have cross correlations which depend on i and
on g, T, 0, w.and ¢ where

T2

¢

TllTIE

2
o

1s the product of the input signal-to-notse ratios, and

T . =increase in system temperatures due 1o correlated flux {rom source

T,..T,, = total system noise temperatures at PSS 11 and 12, including total
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source. flux, correlated or otherwise

6 = difference in path length from source to the two stations, in seconds (often
called 7.)

= crror in clocks. or actual time difference betwoeen first samples at the two
stations.

w = stopped fringe frequency, or apparent doppler difference after demodulation,
it rad/sec

¢ = stopped {ringe phase
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As shown in the Appendix, the cross correlations, that is the expected values of the cross-

products, can be exp

ressed as

9
E(XZ,) ==pa.(1,5)cos (jA+ )
I

(D
_ 2
E(XW)) =—p by (7, 6) sin (A +9¢) )
ECY;Z)) =Zp ¢ (7, 8) sin GA + &) )
oo
and
B(YW,) == p d (7.8 05 (1A + 9 )

wherc A = w - 4 usec and it is assumed that the timing is such that the cross products arc
uncorrelated expept for i~ j. The factor 2/x arises due to the hard limiting, and the co-

efficients a0 bii-* G and dij arc determined by the particular filtering and sampling method.
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Figure 3. Demodulation, filtering, and sampling.
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In general, for long baselines and measurement times, the {ringe rate cannot be assumed
constant, and jA must be replaced by a phase angle 8(3) which is known by the geometry.
There is no significant difference in the estimation procedure, We assume here that the
fringe rate is constant, for convenience and because this is valid for the short baseline of

this experiment.

The approximate maximum-likelihood estimation procedure is derived in the Appendix.
The implementation is to maximize the estimator function, G, over assumed values for

1 and w, for the actual received data samples. In calculating G, the stopped fringe rate w
is first normalized by subtracting out known quantities. Thus the frequency variable
becomes

. :
i:_i;r(w*w(]) (6)

where W is the a priori estimate of the stopped fringe frequency. Two factors

contribute to Wy the fringe rate as calculated from the geometry, and the difference in

local oscillator frequencies, or effective receiver-center frequencies, at the two stations.
The frequency f is the sum of the errors due to geometry and to oscillator instabilities,
and the estimate of f is the estimate of these errors.

The steps in the cstimation procedure for 7 and f are:
(1) Assume a valuc of 7, say Ty
(2) Form all cross-products whose ¢ross correlations are nonzero for v = T
(3) Multiply the cross-products by the cross correlations for 7 = 7, neglecting the
sinusoidal terms, that is, form XiZjaij (1, 8), and so on
(4) Assume a value for f, say fj
{(5) Evaluate G(rk, fj)
(6) Maximize G(7,, fj) over the region of uncertainty in f by looping back to step 4
(7) Maximize G(r, , fj)over the region of uncertainty in 7 by looping back to step 1
(8) The estimates 7 and [ of 7 and f are the values of 7, and f; which maximize G

The distinguishing feature of this procedure is in weighting the cross-products by their
assumed r-dependence before envelope detecting. This gives a natural and optimum
method for resolving the estimate of 7 to greater resolution than the time between samples,
and for accounting for the filtering and sampling methods and for the changes in 7 over the
measurement time.

V. TOWARDS OPTIMUM FILTERING AND SAMPLING

Although the ML estimation procedure is the same for all filtering and sampling methods,
the statistics of the estimator function and of the estimates do depend on the filtering and
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the sampling. In this experiment, the utilizable bandwidth was restricted by the maximum
possible sampling rate to much less than the receiver bandwidth. Thus the filters could be
chosen essentially arbitrarily. FFor this case, it is shown in Reference 3 that a filter which
integrates over the time between samples (a sliding window integrator) is nearly ideal in
the sense of maximizing both the minimum and the average signal-to-noise ratios of the
estimator function. In conjunction with this filter, the sampling times in the various
channels should be staggered as sh_own in Figure 3. Both the cosine and sine channels at
both receivers are sampled with a uniform interval of T = 4 usec between samples, but the
sine channel is sampled T/2 later than the cosine channel at one receiver, and T/4 later at
the other receiver.

The optimization problem is considerably ditferent when the utilized bandwidth is limited
by the receiver RF bandwidths. In this case the receiver transfer function may be the
principal factor determining the cffective filter characteristics, and the primary design
parameters to optimize are the sumpling rate and phase relationships.

VI. PROPERTIES AND EXAMPLES OF THE ESTIMATOR FUNCTION

The statistics of the estimator function have been ¢valuated both analytically and by simu-
lation.? We summarize here some of the key statistics, and then examine graphically
some typical sample functions which were observed in the experiment.

The estimation procedure is considered to be reliable when the probability is high that the
gstimates are in the general vicinity of the correct values of the parameters, rather than
being completcly extraneous. This depends on the probability distributions of G for the
correct and widely erroncous valucs of the parameters. Once the form of the distributions
arc known, the performance can be well predicted by a figure of merit which we call the
signal-to-noise ratio of the estimator. It is defined as the square of the difference in the
means of G for the correct and incorrect values of the parameters, to the variance of G

at the correct valucs. When G is normalized in the natural manner, its mean is unity for
widely incorrect assumed values of the parameters, and is unity also when p = 0, so

N G
Var G(r, f) (8)

The estimator signal-to-noise ratio varies approximately as p?, i.e., as the product of the
input signal-to-noise ratios, or alternatively as the squarc of the source flux density. For
the particular filtering and sampling method used, it is given by

T r

R= F— (9)

1
2

)
1+
where 2t

r=0.267 p°N




and N is the number of samples in each channel at cach receiver, Since the system band-
width is the inverse of the time between samples in one channel, N is also the system time-
bandwidth product.

Estimation will be reliable whenever R exceeds about 10, because the maximum value of G
will almost always occur in the vicinity of the correct values of 7 and f unless the initial
uncertainty in these parameters is large. For example, when the initial uncertainty in f is
negligibly small, the number of independent values of G which must be calculated is
approximately cqual to the fime uncertainty times twice the system bandwidth. For the
250 kHz bandwidth of this experimment, time uncertainties of £10 to +100 usec would
requite calewlation of only 10 to 100 independent values of G, It can be seen from the
curves of Reference 3 that, for thesc uncertainties, the results would be reliable about

98 to 99 percent of the time with R = 10.

The resolution of the estimates depends on the peakedness of G more than on R, An ap-
proximation to the rms error is estimation of 7 is presented in Reference 3, and is

0.79T ‘
O, = 7> (10)
le/l
where T is the time between samples i one channel, or the inverse system bandwidth.
In terms of R,
0.289T
T NE

so that R = 10 is sufficient to reduce the rms error to less than 0.1 T as well as to result in
reliable estimation.

Insight into the capabilitics of the estimator function to resolve time and frequency can be
gained by studying the function at high signal-to-noise ratios. Figure 4 shows a plot of an
actual sample function of G(r, ,f ) observed for a fairly high intensity source, 3C279, with
R estimated to be 24.8. The maxnnum of G is 52.844 and occurs for f =-0.20,1, =

40.97, so that these are the estimates i and # of f and 7. In the time domam G is nominally
symmetrical, and decreases to half its maximum in under + 2 usec, and approximately to
zero in *4 usec, In the frequency domain, G is also nominally symmetrical about the
actual value of f, although this is not apparent from the sample function because the
maximum did not occur at f. = 0. The measurement time of the ¢xperiment was NT = 0.64
sec., and the effective bandwidth of G is slightly less than the inverse of this time. It is
observed that for different t‘i. the maximum of G occurs at very close to the same value of
T . This implies that it may be unnecessary to maximize over f.when only estimates of 7
are required, provided that the initial uncertainty in f is small compared to 1/NT, say less
than £0.1/NT.
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Figure 4. An estimator sample function at a high signal-to-noise ratio.
The performance of the estimator when the noise is significant is illustrated in Figures 5 .

and 6. Each presents three sample functions from different realizations of the experiment,
with the time dependence shown only for the frequency variable fixed at the nominal
value, fj = 0. Figure 5 is for a weaker source, 4C39.25, with R estimated to be 3.81, which
is significantly below the suggested design value of 10. In one of the three cases, the
maximum of G occurs near 7, = 21 usec, far removed from the true value which is near 41
usec. Extraneous results like this occur frequently at these low signal-to-noise ratios.
Figure 6 is for source P1127-14, with R cstimated to be 8.20, which is only marginally
below the design point of 10. Fairly wide variations in the maximum value of G occur at
this signal-to-noise ratio, but no extraneous maxima were observed in the 72 sets of data
taken for this source.

Vil. DETAILED RESULTS

A total of 504 sets of data werc taken using five different radio sources, and independent
estimates of the time and frequency differences at the two receivers were made for each
set of data. The most important results are the means and standard deviations of the
estimates of 7 and f as a function of the estimator signal-to-noise ratio, R. In order to
present these results, it was necessary to estimate R from the data. The method for es-
timating R is presented later.
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Joint Estimate of r and

Table 2 presents the results of the joint estimation of 7 and f tor the five sources. The
statistics are based on 144 independent estimates For cach of the two strongest sources,
3C273 and 3C279, and on 72 cases tor the other sources. Since the true values of 7 and
['were not known. it was nof possible to compute the actual rovs errors, therefore, the
standard deviations were estimated from the data using the estimates of the means. The
standard deviation of the nean estimate for one source s equal to the stundard deviation
of one estimate for that source. divided by the square root of the number of cases. None
ol the mean estimates of 7 differ trom the value 40.97 by more than two standard
deviations, All variations in the mean estimates can thus be gtiributed o noise. There is
no evidence to suggest any effects due 1o errors in source or station positions. changes in
the clock synchronization during the experimerit, or ¢rrors in duty processing.

The statistics of the estimates of £ cannot be attributed entirely to noise, because of local
oscillator instabilitics. A hvdrogen maser was used for the S-band reference at DSS 12, and
rubidium was used at DSS 11, so the rubidium standard contribution dominated. Both the
long- and short-term stabilitics are on the order of one part in 10" Errors in the nominal
value of fof up to 0.1 Hz were anticipated. as were short term variations with o standard
deviation on the order of 0.01 to 0.1 Hz.

Due to noise alone, the standard deviation of £ should vary as R~ provided R is ~ 10

or greater. This relationship was nominally satisfied for the sceond and third strongest
sources, with R = 24.8 and 8.20, and standard deviations of 0.0946 and 0.159 Hz. For
the strongest source, the frequency mstability was not negligible compared to the noise.
Therefore, its effect was estimated from the results for two strongest sources, assuming
the noise and instability errors to add in the mean square. The rms error due to frequency
instability was estimated at 0.036 Hz, which is well within the tange of uncertainty of this
effect. The rms freauency estimation error due to noisce is then approximately

0.468
R

Hz

This relationship was alse closely satisfied for the next weakest source. An R ot 10 thus
results inan rms error in frequency estimate of less than 0.1 divided by the measurement
time of 0.64 sec, just as it results i a timing crror of less than 0.1 divided by the bandwidth.

Estimation of 7 For Fixed

When the a priori uncertainty in frequency is small, 7 can be estimated by maximizing G
over 7 only, assuming no {requency error, that is. £ = 0. This results in better estimates of

7 than docs joint estimation of 7 and t when the long- and short-term frequency instabilitics
are very small. Betore this experiment was actually performed, it was felt that the {re-
qguencey stabilitics would be sufficiently good to omit maximization over f, and this was
confirmed in the experiment. However, the amount of long-term drift is random. and the




Table 2 .

Joint Estimation of 7 and f.

listimated ESTIMATION OF 7 ESTIMATION OF f
SNR of Standard Standard |
Radio Estimator Mean Deviation Mean Doeviation
Source (R) (usec) (usec) (Hz) (Hz)
3C273 148.0 40.955 0.0956 -0.0807 0.0503
3C279 24.8 41.00 0.228 -0.0799 0.0946
P1127-14 8.20 40.95 0.403 -0.0810 0.159
DW0742+10 4.24 40,95 0.719 -0.0772 0.239
4C39.25 3.81 40.78 1.26 -0.0355 0.249

frequency offsets in the local oscillators might have been too large on another day. [t was,
therefore, necessary to process the data in both manners, in order to be able to predict

future performance.

The results of estimation of 7 for f fixed at zero arc presented in Table 3. The theorctical

rms errors in estimation of 7 are also presented, as calculated for the estimated values of R.

For the three highest signal-to-noise ratio cases, the observed and calculated rms errors were

very close. For the lowest two signal-to-noise ratios, the obscrved errors were significantly

higher than the calculated values. This is because the theory breaks down when R is low .
enough so that extraneous results occur.

The observed rms errors at low signal-to-noisc ratios would have been still higher if the
assumed region of uncertainty in 7 had been greater, because there would have been more
extraneous results due to noise. Throughout the experiment, the uncertainty region was
assumed to be from 30 to 50 usec.

Table 3
Estimation of 7 for f = 0.
Estimation of 7 Theoretical
Standard rms Error
Radio Estimated Mean Deviation inr

Source R (usec) (usec) (uscc)
3C273 148.0 40.955 0.0978 0.095
3C279 24 .8 41.00 0.224 0.232
P1127-14 8.20 40.95 0.408 0.403
DW0742+10 4.24 40.98 0.641 0.560
4C39.25 3.81 40.92 0.952 0.591
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Comparison of Estimation Methods

In comparing the results of estimating 7 jointly with f and with f fixed at zero, it is seen that
there is negligible difference in the standard deviations of the estimates for the three highest
signal-to-noise ratio cases, and that all are close to theory. For the two lower signal-to-noise
ratios, the crrors are significantly higher when f is estimated instead of assumed to be zero.
There are two rcasons {or this. First, the estimates of f are poor enough to degrade the
estimate of 7. Sccond., more extrancous estimates occurred, because there were cffectively
more independent calculations of G tor noise only.

Estimation of R, p, and Flux Density

For each independent case, the approximate maximum likelihood estimate for p is the
square foot of the maximum value of G, divided by the proper normalization factor. This
is the best estimate of g only because the maximum value of GG occurs at the best estimates
of 7 and . A better estimate of p would be obtained from value of G5 at the correct values
of r and {. Therefore, since it was desired to have the overall best cstimates of p, and hence
of R, the values of p were estimated using the best overall estimates of 7 and f. These best
estimates were taken as 1 = 40.955 and = 0.0807 Hz, the values obtained from the stron-
gest source. The overall cstimates of p for each source were taken as the average of the
cstimates of p for all of the cascs | or that source.

The estimates of R were obtained from the estimates tor p according to equations

8 and 9. To estimate the correlated fluxes, it was assumed that the system temperatures at
DSS 11 and 12 were the cold sky temperatures of 37K and 16.3K, respectively, raised by
the source total flux at the rate of 0.11K per flux unit. Then the correlated fluxes arc
given by Equation 1.

Table 4 presents the estimated flux densities, input signal-to-noise ratios, and ¢stimator
signal-to-noise ratios for the five sources.

Table 4
Estimated Flux Densitics and Estimator SNR’s.

Total Lstimated FEstimated Estimated
Flux Correlated Geo, Mean Estimator
Radio Number [Ref. 4] Flux Input SNR SNR
Source of Cuases (fu) (fu) (p) (R)
3C273 144 39.0 22.0 0.0834 148.0
3C279 144 122 3.1 0.0344 24 8
P1127-14 72 G2 4.6 0.0199 8.20
DW0742+10 72 3.7 3.3 0.0145 4.24
403925 72 3.8 3.1 0.0138 3.81
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APPENDIX

This appendix presents a precise formulation ol the problem and the notation, and the
derivation of the approximate maxinum likelihood estimation procedure. The optimiza-
tion of the filtering and sampling, an analysis of the statistics of the ¢stimator function,
and an approximation to the rns error of the time estimate are presented in Reference 3.

Problem Formulation and Data Sampling

Figure 3 illustrates the demodulation, filtering, and sampling of the radio-source signal

and receiver noise at the two ground stations. The radio energy emitted by the radio point
source is essentially white and gaussian. However, because we can only observe the energy
in the bandwidth of our receivers, we can consider the signal to be a narrowband gaussian
process. The signal plus noise at the outputs of the two receivers can be represented as

X(t) = [n(t)s(t)] cos (e, t+¢ )+ [m(D+r()] sin (w t+¢)) (A1)
and |

Z(t) = [p(t)Fs(t-5)] cos (w, t+¢, ) Q(1)+r(t-8)] sin (w, t+g,) (A2)
where

t = time

5 = 8(t) = time lag from receiver 1 to receiver 2

W w, = difference in doppler shift, or actual fringe frequency

1

¢, 0, = random phase angles
s(t), r(t) = noisc processes representing signal
n(t), m(t), p(t), g(t) = receiver noise

All of the noisc processes arc assumed independent and bandlimited only by the receivers.
The difference frequency w, - w, and difference phase ¢, - ¢, are assumed to be constant
over the observation time, however, the time delay 8(t) varies duc to the rotation of the
Earth. We can assume this to be linear and known, 8(t) = 60 + &t. The difference frequency
and phase are essentially constant only because the change in 8 is small compared to the
reciprocal of the difference frequency.

Supposc now that we observe X(t) beginning at t = 0, and Z(t) beginning at t = 7. This time
offset 7 is not precisely known, because the clocks at the two stations are not precisely
synchronized. We desire to form an estimate ¥ of 7 from the received signals, and to use
this estimate to synchronize the clocks.

In order to extract the maximum information from the received signals, both the sine and
cosine components of the random processes must be processed. The received signals are
thus demodulated to bascband in two channels, using quadraturc phase reference signals
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derived from rubidium frequency standards which we require to be frequency and phase
stable over the observation interval. The signals are then filtered and sampled, with the
filtering assuring that all samples in each channel are independent of one another. The
demodulated and filtered signals, with * denoting convolution. are

X(t) = [X(t) cos(wy t+¢y )] *h, (1) (A3)

vy = [ X(1) sin(w31+¢>3')]*hy (t) (A4)
at the X rcceiver, and

7(t) = [Z(t) cos(w4t+q>4)]*hl (1) (AS)

w(t) = [Z(t) sin(w, t+¢, )] *h, (1) (AG)

at the Z receiver. We have represented the filtering by convolutions with h,, hy, h,,and
hW , the filter weighting functions.

Since the frequency and phase reference for a narrowband process can be chosen arbitrarily,
we can choose the frequency and phase reference of either X or Z arbitrarily. For conven-
ience, we chose w| = wjyand ¢, = ¢, and we define w = w, - w, and ¢ = 9y =0y The dif-
ference frequency w, also called the stopped fringe rate, is determined by the relative
doppler between X and Z, as reflected by w,, and by the reference w,. The difference or
fringe phase ¢ is random, and uniformiy distributed. With this simplification, the observed
processes are

x(ty = [n(ty+s(t)} «h (1) (A7)
y(t) = [m(ty+r(t)) *h (1) (A8)

z(t) = {[p(t)+s( t-8)] cos(w t+¢p) (A9)

+ [q(r)tr(t-8)] sin(wt+g)} *h, (1)

w(t) = { [q(OF7(t-8)] cos(witg) (A10)

- [p(t)y+s(t-6)] Sin('o.)tJrqb)} *hw (t)

The four observables are now sampled, all at a uniform and identical rate, with a sampling
interval T. Independence of the samples in each channel is assured by having the weighting
functions be zero outside of the interval (Q, T), and by the whiteness of the noise processes.
A remaining parameter which can be varied is the relative times of the samples in the sine
and cosine channels, so we leave this arbitrary. As references, we assume that the sampling




of x(t) begins at t = 0, and the sampling of z(t) begins at t = 7, that is, at the delay we wish
to estimate. The samples of y and w occur & yand A, after the samples of x and z. Thus
the samples are

Xj =x({T)
Yj = y(j'l”wLA1 )
Zj =z()T+7)

and

Wj = w(iT+r+A,)
At this point we make the further assumption that w is a very low frequency compared to
the sampling rate, so that the factors cos(wt + ¢) are constant over T and can be brought

outside of the convolution integrals. This assumption is rcasonable, since « can be chosen
by the experimenter,

We now normalize the observables to unit variance, and express the obscrvable covariances
as

E(XiZj) = Aij = pay; cos(jTw +¢) (A1)
E(Xin) =B~ pbij sin(Tw +¢) : (A12)
E(YiZj) = Cij = pc;; sin(jTw +¢) (Al13)
E(Yin)= D;; = pd;; cos(Tw +¢) (Al14)

The a5, bij, € dij reflect the dependence on 7-6 (t), and are constant for fixed i5j when
7-8 is constant. In any case, they vary slowly in i-j. Also, the sinusoidal variation in the
covariances is slow in j, because wT <€1. Thus for each i there is a range of j for which the

covariances are essentially constant.
Derivation of Approximate Maximum Likelihood Estimator

The gencral procedure of maximum-likelihood cstimation is to maximize the a posteriori
probability density function (PDF) of the observables, conditioned on the unknown param-
eters. The values of the parameters which maximize the PDF for the given set of
observables are chosen as the maximume-likelihood (ML) estimates. The parameters to be
estimated here are p, 7, ¢, and w. In this section, we derive approximate maximizations of
the PDF with respect to p and ¢. The resulting function must then be maximized
numerically with respect to 7 and w in order to obtain estimates of all the parameters.

The first step in our problem is to find the joint PDF of the observables Xp Y, Z,and W,
conditioned on the unknown parameters p, ¢, 7, and w. This PDF depends only on the
conditional covariance matrix, since the observables are jointly gaussian and zero mean.




Supposce we define a row vector U having as its components all of the observables:

U= (X, X, X Y Yo WY 2 2y W, W, W) (ATS)

wihiere N ois the number of samples of each vartable.

Then the covariance matrix of U is

0
Al C!
B D' O 1

where A, B, C, and 1) are the covarlance matrices with elements Aii‘ Bli' and so on, given by
equations (A11) through (A 14), and the conditional PDF of the obscrvables is

P(Up, ¢71, w) :W exp [JL,U/\"l Ut]

The covartance matrix A depends on the parameters p, ¢, 7, and w, and ¢ is a constant.
The major problem at this point is to invert the covariance matrix. We can do this only in

serics form, and 1t is the truncation of this series in the maximization procedure which
causes our estimator to be only approximately maximum likelihood.

To proceed we define a matrix P such that

A=T+P (A1R)

The matrix P has at most four non-zcro clements in cach row and column, because A, B, C,
and D have at most two non-zero elements in each row and column. Furthermore, the
non-zero elements of Poare proportional to p and do not exceed p in absolute value. Since
p is small (<10-2), we can expand A-! in a power series, and bound the terms:

Al =1-P+P2 PP+ (A19)

Since the two principal quadrants ol P are zero, the principal diagonal elements of P" are
zero for odd n. The other elements are bounded by
max . m1ax ]
. (P, | =4p (pr-by.
1] i i 1]
(A20)
A ! [)n

where (PP )iidcnotcs the 1j elements of PM
Closer bounds cun be obtained utilizing properties of the cross covariances for particular

Cases.




The conditional pdf can now be written as .
P(Ulp,p.7,0) =cexp -[‘/z U(I4P}! Ut - % log det (I+P')] (A21)

Using a well-known matrix identity,

p2 PJ P4
s = N =17 Y [ R .
log det (I+P) = Tr log (1+P) = Tr(} 3 + 174 + (A22)
The odd power terms can be deleted, since the principal diagonal of P? is zero lor odd n.
Thus
p2 n4d

log det (14P) = -Tr (= +FZ +-) (A23)

We now define a likelihood function L, (U lp.¢,7.w) as the exponent of the conditional pdf,
and maximization of L, is equivalent to maximization of the pdf,

L,(Upgrw)=-2%Ul-P+P? -+ U (A24)
32 P4
+‘/zTr(_,—2 gt )

[t is not feasible to maximize L, analytically with respect to any of the parameters without

neglecting terms in P of higher order than P2, With this approximation, we can maximize

with respect to p and ¢. Since normally 7 and w are the parameters of primary interest, the .
approximate solutions for p and ¢ usually suffice, but greater accuracy can be obtained

numerically if required.

To proceed, we define a new matrix Q by

0 0 A B
=tp oL 0 0 ¢ D ,
Q="F =7 At C 0 0 (A25)
BE DU 0 0

Next we drop the U I U' term in L, , which is independent of the parameters, to obtain
L, (Uip,¢,7,w) =% U(Q - p?Q*)U" + % p? Tr(Q?) (A26)

By differentiating with respect to p, we see that L, is maximized for the conditional esti-
mate of p

t
vQu (A27)

ﬁ_

S 2UQ U - TH(Q?)
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The denominator of this expression can be approximated by its mean, which is Tr(Q?), so

_uQut

=3 2
Q) (A28

p

The variance of the denominator of equation (A27) is also on the order of Tr(Q?). There-
fore, since Tr(Q?) ~ 4 N, the approximation is good when N is large, say 10* or greater,
which will always be true in VLBI problems.

A new likelihood function is now obtained by substituting the value of 2 into equation
(A26), and again approximating uQ?u' by Tr(Q?):

[UQU'}?

Bt St B ¢
TrQ?) (A2

Ly(Ulp.g.r.w) =

Since the elements of Q vary slowly except for the sinusoidal variation, Tr(Q?) is essentially
independent of Q and w so long as NAw ¥ n. This can be assured by controlling w by
selecting the local oscillator frequencies. Neglecting any slight variation of Tr(Q?), L, can
be maximized over ¢. To do this, Q is expressed

Q=Rcosgp+Ssing (A30)

where R and S do not depend on ¢ and are given by

R = 0 RO
Rf) 0
0 S()
S:
S! 0

(ai. cos jAw (—b,.j sin jAw)

]

(c:ij sin jAw) (-dij cos jAwW)

(-a;; sin jAw)  (-by; cos jAw)

(cij Ccos j Aw) ('-dij sin jAw)




The derivative of the likelihood ratio with respect to ¢ is then

d L= 2(UQUY) U(S cos ¢ - R sin ¢) Ut
dg Tr(Q?)

(A35)

and the value of ¢ which maximizes L, is

Usu!

¢ = arctan GRUT

(A36)

The new likelihood ratio is the maximum of L, that is, L, (3), which we renormalize to
obtain the final estimator function G:

_(URUY +usuYy’
4Tr(Q?)

G(r,w)

(A37)

This is as far as we can proceed analytically. To find the final approximate ML estimates of
all the parameters, G is maximized numerically over 7 and «. When only ¥ is required, w is
usually known a priori, so that the numerical maximization is only over one parameter, 7.
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